煤化工废水处理技术研究与进展
煤炭在我国能源结构中处于主导地位,占一次能源比重达到70%以上,是我国能源安全的重要保障。新型煤化工技术作为洁净和高效利用煤炭的先进方法成为我国能源领域研究的热点和发展的重点,该技术不仅能够解决我国煤炭资源因地理分布和消费空间不均衡所带来的运输制约问题,更可作为清洁原材料用以化学合成例如煤制油、煤制烯烃、煤制二甲醚、煤制天然气、煤制乙二醇等,促进我国煤炭资源向清洁能源的产业升级。
煤化工过程需要大量生产用水,用于煤气发生炉的煤气洗涤、冷凝以及净化,该过程产生大量的废水,该废水含有高浓度的污染物,水质成分复杂,主要以酚类化合物为主,同时含有大量的长链烷烃类、芳香烃类、杂环类化合物、氨氮、氰等有毒和有害物质,水质可生化性差,具有很强的微生物抑制性,是一种典型高浓度难生物降解的工业废水。同时,煤化工企业的正常运行不仅需要足够的新鲜水资源,也需要有环境容量足够大的纳污水体。然而,现代煤化工项目开发重点在煤炭资源丰富的西北及华北地区,这些区域水资源匮乏,占有量不到全国总量的20%,水环境容量不足,甚至缺乏纳污水体,煤化工产业的兴起将会导致该区域地下水的过度开采和严重污染。针对煤化工企业的发展与当地环境污染之间出现的严重矛盾,国家对新建煤化工项目的用水和水污染物的排放提出了严格的要求,处理后废水回用率达到95%以上,基本实现“零排放”。然而,常规的废水处理工艺无法获得满意的出水水质,水污染问题已成为制约煤化工产业发展的瓶颈。因此,通过研发提高废水可生化性的关键技术,缓解有毒和难降解物质对微生物的抑制作用,以较低的成本对煤化工废水进行深度处理,最终实现废水中污染物的大幅削减和水资源的重复利用已经成为煤化工企业可持续发展的自身需求和外在环保要求。
目前,单一的水处理工艺具有严重的局限性,不能有效地解决该类废水治理的问题,往往需要根据工艺特性进行灵活组合和优化,才能够互相弥补技术缺陷,最终实现废水循环回用和“零排放”。因此,根据处理工艺组合的角度和各自技术特点将其归纳为:分离技术、生物技术和高级氧化技术。
转载请注明出处:瑞美迪官网www.rmdhb.com(废水处理厂家)